Package: bayesianETAS 1.0.3
bayesianETAS: Bayesian Estimation of the ETAS Model for Earthquake Occurrences
The Epidemic Type Aftershock Sequence (ETAS) model is one of the best-performing methods for modeling and forecasting earthquake occurrences. This package implements Bayesian estimation routines to draw samples from the full posterior distribution of the model parameters, given an earthquake catalog. The paper on which this package is based is Gordon J. Ross - Bayesian Estimation of the ETAS Model for Earthquake Occurrences (2016), available from the below URL.
Authors:
bayesianETAS_1.0.3.tar.gz
bayesianETAS_1.0.3.zip(r-4.5)bayesianETAS_1.0.3.zip(r-4.4)bayesianETAS_1.0.3.zip(r-4.3)
bayesianETAS_1.0.3.tgz(r-4.4-x86_64)bayesianETAS_1.0.3.tgz(r-4.4-arm64)bayesianETAS_1.0.3.tgz(r-4.3-x86_64)bayesianETAS_1.0.3.tgz(r-4.3-arm64)
bayesianETAS_1.0.3.tar.gz(r-4.5-noble)bayesianETAS_1.0.3.tar.gz(r-4.4-noble)
bayesianETAS_1.0.3.tgz(r-4.4-emscripten)bayesianETAS_1.0.3.tgz(r-4.3-emscripten)
bayesianETAS.pdf |bayesianETAS.html✨
bayesianETAS/json (API)
# Install 'bayesianETAS' in R: |
install.packages('bayesianETAS', repos = c('https://gordonjamesross.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 8 years agofrom:c62be50ef0. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 25 2024 |
R-4.5-win-x86_64 | NOTE | Oct 25 2024 |
R-4.5-linux-x86_64 | NOTE | Oct 25 2024 |
R-4.4-win-x86_64 | NOTE | Oct 25 2024 |
R-4.4-mac-x86_64 | NOTE | Oct 25 2024 |
R-4.4-mac-aarch64 | NOTE | Oct 25 2024 |
R-4.3-win-x86_64 | NOTE | Oct 25 2024 |
R-4.3-mac-x86_64 | NOTE | Oct 25 2024 |
R-4.3-mac-aarch64 | NOTE | Oct 25 2024 |
Exports:maxLikelihoodETASsampleETASposteriorsimulateETASsimulateNHPP
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Bayesian estimation of the ETAS model for earthquake occurrences | bayesianETAS-package bayesianETAS |
Estimate the parameters of the ETAS model using maximum likelihood. | maxLikelihoodETAS |
Draws samples from the posterior distribution of the ETAS model | sampleETASposterior |
Simulates synthetic data from the ETAS model | simulateETAS |
Simulates event times from an inhomogenous Poisson process on [0,T] | simulateNHPP |